信息化软件 企业管理 营销管理 业界消息 标签索引

排队论

2008-10-21

排队论(Queuing Theory)

排队论: 排队论简介

研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。

日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。排队论的基本思想是1910年丹麦电话工程师A.K.埃尔朗在解决自动电话设计问题时开始形成的,当时称为话务理论。他在热力学统计平衡理论的启发下,成功地建立了电话统计平衡模型,并由此得到一组递推状态方程,从而导出著名的埃尔朗电话损失率公式。自20世纪初以来,电话系统的设计一直在应用这个公式。30年代苏联数学家А.Я.欣钦把处于统计平衡的电话呼叫流称为最简单流。

瑞典数学家巴尔姆又引入有限后效流等概念和定义。他们用数学方法深入地分析了电话呼叫的本征特性,促进了排队论的研究。50年代初,美国数学家关于生灭过程的研究、英国数学家D.G.肯德尔提出嵌入马尔可夫链理论,以及对排队队型的分类方法,为排队论奠定了理论基础。在这以后,L.塔卡奇等人又将组合方法引进排队论,使它更能适应各种类型的排队问题。70年代以来,人们开始研究排队网络和复杂排队问题的渐近解等,成为研究现代排队论的新趋势。

排队论: 排队系统模型的基本组成部分

排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)都是随机的。图1为一最简单的排队系统模型。排队系统包括三个组成部分:输入过程、排队规则和服务机构。

输入过程

输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。随机型的输入是指在时间t内顾客到达数 n(t)服从一定的随机分布。如服从泊松分布,则在时间t内到达n个顾客的概率为

或相继到达的顾客的间隔时间T 服从负指数分布,即

式中λ为单位时间顾客期望到达数,称为平均到达率;1/λ为平均间隔时间。在排队论中,讨论的输入过程主要是随机型的。

排队规则

排队规则分为等待制、损失制和混合制三种。当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。在等待制中,为顾客进行服务的次序可以是先到先服务,或后到先服务,或是随机服务和有优先权服务(如医院接待急救病人)。如果顾客来到后看到服务机构没有空闲立即离去,则为损失制。有些系统因留给顾客排队等待的空间有限,因此超过所能容纳人数的顾客必须离开系统,这种排队规则就是混合制。

服务机构

可以是一个或多个服务台。多个服务台可以是平行排列的,也可以是串连排列的。服务时间一般也分成确定型和随机型两种。例如,自动冲洗汽车的装置对每辆汽车冲洗(服务)时间是相同的,因而是确定型的。而随机型服务时间v 则服从一定的随机分布。如果服从负指数分布,则其分布函数是

式中μ为平均服务率,1/μ为平均服务时间。

排队论: 排队系统的分类

如果按照排队系统三个组成部分的特征的各种可能情形来分类,则排队系统可分成无穷多种类型。因此只能按主要特征进行分类。一般是以相继顾客到达系统的间隔时间分布、服务时间的分布和服务台数目为分类标志。现代常用的分类方法是英国数学家D.G.肯德尔提出的分类方法,即用肯德尔记号 X/Y/Z进行分类。

X处填写相继到达间隔时间的分布;

Y处填写服务时间分布;

Z处填写并列的服务台数目。

各种分布符号有:M-负指数分布;D-确定型; Ek-k阶埃尔朗分布;GI-一般相互独立分布;G-一般随机分布等。这里k阶埃尔朗分布是指为相互独立且服从相同指数分布的随机变量时,服从自由度为 2k的χ2分布。例如,M/M/1表示顾客相继到达的间隔时间为负指数分布、服务时间为负指数分布和单个服务台的模型。D/M/C表示顾客按确定的间隔时间到达、服务时间为负指数分布和C个服务台的模型。至于其他一些特征,如顾客为无限源或有限源等,可在基本分类的基础上另加说明。

排队论: 排队系统问题的求解

研究排队系统问题的主要目的是研究其运行效率,考核服务质量,以便据此提出改进措施。通常评价排队系统优劣有 6项数量指标。

①系统负荷水平ρ :它是衡量服务台在承担服务和满足需要方面能力的尺度;

②系统空闲概率P0:系统处于没有顾客来到要求服务的概率;

③队长:系统中排队等待服务和正在服务的顾客总数,其平均值记为LS;

④队列长:系统中排队等待服务的顾客数,其平均值记为Lg;

⑤逗留时间:一个顾客在系统中停留时间,包括等待时间和服务时间,其平均值记为WS;

⑥等待时间:一个顾客在系统中排队等待时间,其平均值记为Wg。M/M/1排队系统是一种 最简单的排队系统。系统的各项指标可由图2中状态转移速度图推算出来(表1)。其他类型的排队系统的各种指标计算公式则复杂得多,可专门列出计算公式图表备查。现已开始应用计算机仿真来求解排队系统问题。

排队论: 排队论的应用

排队论已广泛应用于交通系统、港口泊位设计、机器维修、库存控制和其他服务系统。表2中列出排队论的应用。

排队论: 参考文献

  • 徐光辉:《随机服务系统》,科学出版社,北京,1980。


相关链接
是/非矩阵2008-10-22 二维判断法2008-10-12
设计管理2008-10-31 价值链管理2008-10-31
营销人员基本行为规范2008-11-02 红牌作战2008-11-05
克拉克森原则2008-10-03 静思管理2008-11-09
麦肯锡30秒电梯理论2008-10-02 订货点法2008-11-14
企业管理目录
企业管理 战略规划 评标选型 项目管理 实施运维 人力资源 培训考核 时间管理 绩效薪酬 流程管理 财务管理 企业文化 协同商务 信息安全 采购管理 资产管理
网站首页 文档首页 信息化软件 企业管理 营销管理 业界消息 标签索引
Copyright © 2005-2010   深蓝信息化知识文档中心   http://www.upblue.com